Sensors and Systems
Breaking News
ICEYE and Esri Australia (through Boustead Geospatial) partner to deliver unprecedented hazard intelligence across Australia and Southeast Asia
Rating12345Partnership brings real-time hazard intelligence to emergency responders, utility and...
ESA and GEOSAT Join Forces to Accelerate Space Entrepreneurship and Sustainable Innovation
Rating12345 The European Space Agency (ESA) has signed a...
ABAX Launches ABAX Site Operations – Redefining the Real-Time Location System (RTLS) Market
Rating12345 ABAX, one of Europe’s providers of connected mobility...
  • Rating12345

More than halfway through the 2023 melting season, Greenland has seen a substantial transformation of its snow cover. Melting has been above average for much of the season, including on several days in June and July when melt was detected across 800,000 square kilometers (302,000 square miles)—up to 50 percent—of Greenland Ice Sheet’s surface, according to the National Snow and Ice Data Center. 

Summer melting was ramping up on June 14, 2023, when the Operational Land Imager (OLI) on Landsat 8 acquired this image (top) of Frederikshåb Glacier. This lobe-shaped piedmont glacier, located in southwest Greenland, flows downward from the Greenland Ice Sheet, winds past a series of valleys and nunataks, then flattens out on smoother terrain along the coast. 

The other image (bottom), acquired with the OLI-2 on Landsat 9, shows the same area on July 24, after more than a month of additional melting. Notice the dramatic reduction in the extent of brighter (high albedo) surface snow. 

Image Credit: NASA Earth Observatory images by Wanmei Liang, using Landsat data from the U.S. Geological Survey