Sensors and Systems
Breaking News
Leica Geosystems and Develon Expand 3D Machine Control Options for DD100 and DD130 Dozers
Rating12345Leica Geosystems and Develon collaborate to deliver seamless integration...
vHive Announces Breakthrough in Autonomous Offshore Wind Turbine Inspections with an In-House Solution
Rating12345NEW YORK — vHive, a global leader in infrastructure...
Safe Pro’s Airborne Response Awarded Purchase Order for Drone Aerial Inspections of Telecom Towers in South Florida
Rating12345Q4 2024 Drone Services Revenue Increasing, Driven by Completion...

August 1st, 2010
The Use of Products from Ground-based GNSS Observations in Meteorological Nowcasting

  • Rating12345

Convective rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. The microwave signals continuously broadcasted by the Global Navigation Satellite Systems (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere. Estimates of IWV retrieved from ground-based GNSS observations may, then, constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity. At the Spanish Meteorological Agency (AEMET), a near-real-time map of IWV estimates retrieved from ground GNSS measurements in the Iberian Peninsula and West Mediterranean region is operationally built and presented to the forecaster. The maps are generated every 15 minutes following a one-dimensional variational assimilation scheme with the previous map as the background state.  Read More

Leave a Reply

Your email address will not be published. Required fields are marked *