Sensors and Systems
Breaking News
Aspia Space partners with Stelia to advance AI architecture for global-scale land intelligence  
Rating12345Enabling faster, trusted, decision-ready intelligence from innovative data products...
Geo Week Examines How AI is Tackling America’s Trillion-Dollar Aging Infrastructure Crisis
Rating12345Conference Sessions Demonstrate AI-Powered Solutions for Predictive Maintenance, Automated...
NV5 to Showcase at Geo Week 2026 Next‑Generation GeoAI and Mission‑Critical Geospatial Solutions
Rating12345Expert NV5 Speakers to Present on Bathymetric Lidar, Airborne...

February 22nd, 2021
Fires Raged in the Amazon Again in 2020

  • Rating12345

After intense fires in the Amazon captured global attention in 2019, fires again raged throughout the region in 2020. According to an analysis of satellite data from NASA’s Amazon dashboard, the 2020 fire season was actually more severe by some key measures.

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensors on the Suomi NPP and NOAA-20 satellites can detect thermal anomalies, or hot spots, caused by fires. In 2020, both VIIRS sensors combined detected about 1.4 million anomalies in the southern Amazon, compared to 1.1 million in 2019.

“Fire activity was up significantly in 2020. All types of fires contributed to the increase, including deforestation fires and understory fires, the most environmentally destructive types,” said Douglas Morton, chief of the Biospheric Sciences Laboratory at NASA’s Goddard Space Flight Center. “In the southern Brazilian Amazon, deforestation fire activity increased by 23 percent from 2019 to 2020, and active fire detections from understory fires were 60 percent higher than in 2019.”

Morton and colleagues developed a new tool that groups and sorts fires into four types: deforestation (red in the accompanying map), understory forest fire (green), savanna-grassland (blue) and small clearing-agricultural (purple). Download a full-resolution view of the map here. The tool uses characteristics such as the duration, intensity, and movement of fire anomalies to group and identify individual fire events. A single fire event can include dozens or even hundreds of connected thermal anomalies spread out over days or weeks.

Image Credit: NASA Earth Observatory maps by Lauren Dauphin, using data from the GFED Amazon Dashboard team. VIIRS fire data from NASA EOSDIS LANCE, GIBS/Worldview, and the Suomi National Polar-orbiting Partnership. Landsat data from the U.S. Geological Survey. Indigenous Territories and Natural Protected Areas data from the Amazon Geo-Referenced Socio-Environmental Information Network (RAISG).