Sensors and Systems
Breaking News
Teledyne Geospatial and Pointerra3D deliver real-time insights for grid resiliency and rapid response to support the utility industry
Rating12345Vaughan, Ontario, CANADA – January 21, 2025 — Teledyne...
NSG and Esri Global Join Forces to Advance Geospatial Innovation at Esri Saudi User Conference 2025
Rating12345Neo Space Group (NSG), a PIF company and Saudi...
EagleView Launches New Property Data Ecosystem
Rating12345Now customers across property finance, real estate, insurance, roofing,...

August 22nd, 2013
Satellites Improve Air Quality Monitoring in South Africa

  • Rating12345

Economic development often means an increase of harmful gases into the atmosphere. ESA’s GlobEmission project uses satellite data to monitor atmospheric pollution from emissions.

South Africa’s economy is rapidly growing. From 2002 to 2012, its gross domestic product grew by about 270 billion US dollars. Unfortunately, a strong economy often leads to high levels of air pollutants – which can influence regional air quality and can have an impact on global climate change.

Over the industrialised Highveld region, satellites show concentrations of the air pollutant nitrogen dioxide comparable to those observed in Europe, eastern North America and south-east Asia. With such high levels of air pollution, it is important to monitor the emissions that cause them.

Emission inventories are used to describe the location and magnitude of emissions from various origins, such as traffic, forest fires or industry. These inventories are then used for scientific atmospheric models, as well as by policy makers to evaluate the effectiveness of air quality improvement initiatives and decide on future strategies.

Emission inventories are usually compiled from large amounts of statistical data, but are limited by the lack of continuity. Furthermore, events such as forest fires or extreme weather are not taken into account. In addition, economic developments – such as recession or the closing of factories – directly affect atmospheric composition but are not accounted for by common emission inventories.

Nitrogen oxide hot spots

Earth observation satellite observations, however, can provide consistent data on atmospheric composition for improved emissions inventories. For a closer look, ESA began the GlobEmission project to focus on emissions for four specific regions: China, India, Europe and South Africa.

“In GlobEmission, we use state-of-the-art satellite measurements and computer models to calculate the measured air pollutant concentrations back to their origins,” said Dr Ronald van der A, leader of the GlobEmission project.

“The advantages of these emission estimates are their spatial consistency and high temporal resolution. Above all, they are rapidly available because there is no more need to wait for the newest release of statistical data.”

At the Dutch meteorological institute KNMI, Dr Bas Mijling works on improving regional emission estimates using nitrogen dioxide observations from the GOME-2 instrument on Eumetsat’s MetOp satellite and the OMI instrument on NASA’s Aura. He was surprised to see such a large difference between the estimated emissions values for South Africa’s Highveld region and actual values from the satellites.

“The old inventory was especially wrong about the location and strength of emissions by power plants and heavy industry. Using satellite data, however, we can correct their location and update their emission to actual values,” he explained.

Leave a Reply

Your email address will not be published. Required fields are marked *